
BoundaryPredictor: Imitating Cost-Minimzed
Trajectory Sampling for Autonomous Drone Racing

Shreepa Parthaje
Department of Computer Science

University of Virginia
Charlottesville, USA
shreepa@virginia.edu

Nicola Bezzo
Department of Systems Engineering

University of Virginia
Charlottesville, USA
nbezzo@virginia.edu

Abstract—Drone racing is a popular test-platform for deep
neural planning and control methodologies because neural frame-
works can maximize the vehicle’s highly non-linear dynamics to
make split-second maneuvers. Methods which have found the
highest success operate nearly-entirely end-to-end in latent space,
making it difficult to validate the safety in decision making. Prior
to neural methods, min-snap trajectories were generated using
boundary conditions obtained by a model-based optimization
algorithm. This is paired with a low-level controller which follows
trajectories. These methods have three main challenges: difficul-
ties in modelling drone dynamics, difficulties in modelling the
controller limitations, and the heavy computation cost for finding
optimal boundary conditions. We propose the BoundaryPredictor
framework which leverages deep neural methods for finding the
boundary conditions of a min-snap trajectory, while still relying
on the traditional trajectory generation and following methods
to validate trajectory safety. BoundaryPredictor is trained to
imitate low-cost trajectories in a dataset created through a time-
intensive cost-minimizing sampling procedure in a high fidelity
simulator. Furthermore, BoundaryPredictor is trained with the
introduction of weighted soft thresholding in the loss function
to encourage safe behavior when generating trajectories. This
results in BoundaryPredictor having a skew in errors that favor
slower trajectories. Furthermore, we observe in simulation and
in real-life on a BitCraze Crazyflie 2.0, BoundaryPredictor’s
ability to generate fast, track-able trajectories which can nav-
igate circular, straight, and snaked gate courses. Future works
for BoundaryPredictor involve expanding the cost-minimizing
sampling procedure to consider a wider array of potential
trajectories.

Index Terms—imitation learning, weighted soft thresholding
loss, min-snap trajectories, drone racing

I. INTRODUCTION

Autonomous quadcopters (drones) are comprised of three
hierarchical components: perception, planning, and control.
Perception systems turn sensor streams, such as cameras and
depth sensors, into an understanding of the environment. The
planner processes this understanding of the environment to
a set of points, called a trajectory, for the drone to follow.
Finally, the controller turns this trajectory into a high fre-
quency series of commands to the motors in order to follow
the trajectory.

Trajectory generation for autonomous aerial vehicles re-
quires a fundamental understanding of highly non-linear sys-
tem dynamics of the drone platform. Autonomous drone racing
is an emerging competition where gates, posts with a square

hole on top, are arranged into a course for drones to fly
through. Winning a drone race requires maximizing the speed
through a trajectory while still ensuring that the controller is
able to follow the trajectory. As a consequence, research into
autonomous drone racing has increased significantly because
it provides the perfect environment to maximize the unique
system dynamics at play. Computing agile trajectories through
a set of gates presents a unique set of problems in collision
avoidance, maximizing agility, and minimizing tracking error
(i.e. ensuring the trajectory is followed as commanded).

II. RELATED WORKS

In mobile robotics path planning is a significant area of
challenge due to the high dimensionality of the search space.
[1] for instance relies on a RRT approach to get an initial
trajectory followed by a quadratic programming approach to
optimize a trajectory. In drone racing works have focused
highly on imitating human FPV (first-person view) drone
racers, who only operate on information from the drones front
camera on any given time in a fixed gate-course as seen in
[2]. Most works focus on generating agile plans in a fixed
environment to get competitive if not better racing results
than humans in head-to-head races as seen in [3] through
reinforcement learning. What current drone racing papers aim
for is agile trajectories in fixed environments allowing for
repeated interactions in the same environment [2]. While UAV
research has solutions to tackle a variety of environment,
research into a unified solution which addresses agility in new
environments provides new opportunity.

III. BACKGROUND

A. Min-Snap Trajectories
A drones highly non-linear dynamics give way to trackable

aggressive trajectories which only need to minimize snap,
x .

A min-snap trajectory is comprised of two boundary condi-
tions: b0 and bf and the time taken between the boundaries, T .
Boundary conditions include position, velocity, acceleration,
and jerk states as seen in (1).

bi =
(
xi ẋi ẍi

...
x i

)T
(1)

The parameterized representation of the min-snap trajectory
along t ∈ [0, T] can be constructed as a 7th order polynomial.

We solve for the coefficients of the polynomial by creating a
system of equations as seen below in (2).

A =


0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 2 0 0
0 0 0 0 6 0 0 0
T 7 T 6 T 5 T 4 T 3 T 2 T 1

7 · T 6 6 · T 5 5 · T 4 4 · T 3 3 · T 2 2 · T 1 0
42 · T 5 30 · T 4 20 · T 3 12 · T 2 6 · T 2 0 0
210 · T 4 120 · T 3 60 · T 2 24 · T 6 0 0 0


[
p7 p6 . . . p0

]T
= A−1

[
b⃗0 b⃗f

]T
(2)

It is important to note this representation is fully differen-
tiable for t ∈ (0, T). Min snap segments can be joined together
so long as the final boundary condition of one segment is the
initial boundary condition of the next segment, allowing for
differentiability at the joint point. With a boundary condition
set, B = {b0, b1, . . . , bn} and T = {T0, T1, . . . , Tn−1}, we
can create a

∑n−1
i=1 ti second fully differentiable trajectory.

Three dimensional trajectories can be constructed with Bx,
By , and Bz , as along as a shared set T is used when creating
x(t), y(t), and z(t).

B. Mellinger Controller

The Mellinger controller is a feedback-based control ap-
proach for drones, designed to achieve precise trajectory
tracking by leveraging nonlinear control laws for attitude and
position. It computes thrust and angular velocity commands
to stabilize the drones along a desired path by minimizing
trajectory errors, first introduced in [4].

IV. PROPOSED FORMULATION

Computing the required boundary conditions and time seg-
ments, Bx, By , Bz , and T , is a challenging. Traditional
methods involve using a large non-linear model of the vehicle
and using a solver to find the optimal values. This involves ex-
pensive computation along with arduous system identification
to find the parameters. Another strategy involves repeatedly
sampling potential values for the boundary conditions and
validating in simulation, but this is also an expensive process
to do at runtime.

We propose the BoundaryPredictor framework which
teaches a network to predict optimal conditions for the next
gate, Gi with knowledge of just Gi−1, Gi, and Gi+1. This is
done through imitation learning of the lowest-cost trajectories
in simulation along with a weighted soft-thresholding loss
function. On deployment, the start position followed by the
entire gate course parsed through a sliding window of three
gates to create the inputs for the BoundaryPredictor network.
The network will then predict the boundary conditions at
each gate sequentially. These boundary conditions are fed to
create a trajectory which is subsequently fed to a Mellinger
Controller. In real environments, a Vicon System provides state
estimations for the controller

V. METHODS

A. Simulation

The training data is collected from a PyBullet Gym envi-
ronment first introduced by [5]. The default gate setups are
modified to have two heights: 0.3 and 0.525 meters. The
tracking gap in simulation and real-life specific to the input
commands given a variety of trajectories are used to create an
upper-bound acceleration limit to impose on the simulator as
seen in (3).

a(t) < −0.3v(t)3 + 2.0 (3)

We deploy experiments with inertial property randomization
and disturbances seen in Table I in simulation. Furthermore,
tracking inconsistencies exist when ψ0 = 0 versus ψ0 = π

4 .
The dataset sampling procedure (explained in subsection B),
requires the same behavior between two orientations of the
same three gate setup. To address this, we linearly interpolat-
ing the drone’s yaw between gates Gi−1 and Gi as seen in (4).
We found a successful ratio for interpolation to be R = 0.25.

Property Distribution Low High
Mass (M) Uniform -0.01 0.01

Moments (Ixx, Iyy , Izz) Uniform -0.000001 0.000001
Disturbance Force X, Y, Z Uniform -0.000001 0.000001

Property Distribution Standard Deviation
Motor Thrust Additive Noise White Noise 0.000001

TABLE I: Disturbances sampled from during simulation

ψ(t) =

{(
1− t

RT

)
ψi−1 +

(
t

RT

)
ψi if t < RT

ψi if t ≥ RT
, for t ∈ [0, T]

(4)

B. Cost-Minimizing Sampling Procedure

The sampling procedures makes some assumptions regard-
ing the optimal trajectory:
1: A gate can be described in polar (di, θi) centered at Gi−1.
2: The optimal vi and Gi are perpendicular as seen in (5).
3: The optimal acceleration and jerk at every gate is 0⃗.
4: The optimal Bi for Gi is a factor of Bi−1, di+1, θi+1 .
5: When sampling Bi, we decelerate to Gi+1 so v⃗i+1 = 0⃗.

vi(si, ψi) =
(
sisin(ψi) sicos(ψi) 0

)T
(5)

We can store the required data to find Bi in the vector Ei

as seen in (6). In this equation, (d0, θ0) is the position of Gi

and (df , θf) is the position of Gi+1

Ei =
(
vi−1 zi−1 d0 θ0 zi df θf zi+1

)T
(6)

We construct a dataset of 129600 unique samples, Ei. Table
II itemizes constraints on Ei used for the NumPy linspace
method, along with the number of discretized points.

For each Ei, 70 sampled trajectories are evaluated using (7)
in simulation. Ncrash counts crashes, Nskipped counts gates

Constraint Discrete Points per Field
0 ≤ vi−1 ≤ 1 10

zi−1, zi, zi+1 ∈ {0.3, 0.525} 2
0.8 ≤ d0, df ≤ 1.5 6

−π
4

≤ θ0 ≤ π
4

15
−π
4

≤ θ1 ≤ π
4

3

TABLE II: Inputs for NumPy linspace to construct {E}.

skipped in course, Etracking is the mean position error in the
current state to the previously commanded state, and T = t0.
The full procedure, Algorithm 1 was deployed on an AWS
EC2 C6i.24xlarge instance with 96 vCPUs based on Intel Ice
Lake processors. The algorithm was parallelized splitting the
large number of samples across the 96 cores, collecting the
total samples in a handful of hours.

C = 1000000Ncrash + 100Nskipped + 4Etracking + T (7)

Algorithm 1 Optimal Value Sampling for Ei

Given Ei, ϵ = 1e−10, initialize empty vi:optimal, t0:optimal,
and Cmin = ∞
for vi ∈ linspace(0.0, 2.0, 10) do
tlinear = (vi−1 + vi < ϵ) ? 1.5 : 2d0/(vi−1 + vi)
for t0 ∈ linspace(0.5tlinear, 1.1tlinear, 7) do
tf = (vi < ϵ) ? 2df : 2df/v1
v⃗0 = v(v0, ψ1), v⃗1 = v(v1, ψ1), v⃗2 = 0⃗ using (5).
Construct Bi−1, Bi, Bf using (1)
if Equation (3) holds then

Construct trajectory with (2) and simulate for C
if C < Cmin then

Update Cmin, vi:optimal, t0:optimal

end if
end if

end for
end for
return vi:optimal, t0:optimal

C. BoundaryPredictor Network

BoundaryPredictor predicts (vi:optimal, t0:optimal) from an
Ei normalized between the values in Table II. Similarly,
outputs are normalized between [[0, 0], [2ms−1, 2s]].

Layer Type Output Size Activation Function
Input Normalized E vector 8 -

1 Linear 512 Leaky ReLU (α = 0.1)
2 Linear + Dropout 256 Leaky ReLU (α = 0.04)
3 Linear + Dropout 32 Leaky ReLU (α = 0.02)
4 Linear 32 Leaky ReLU (α = 0.02)

Output Linear 2 Sigmoid

TABLE III: Architecture of the BoundaryPredictor neural
network

The per item loss is defined in (8) which is then weighted
to encourage safe behavior. Over-predicting velocity or under-
predicting time results in a higher chance of a crash. The

aggregate loss function in (9) weights errors to favor negative
percent errors (i.e. safe error). Here, WS and WU are the
weights for the safe and unsafe errors respectively, N is the
number of samples, and ϵ = 0.1 is a small constant to avoid
division by zero. A sigmoid sum along with an α which adjusts
the sharpness around ei = 0 allows for differentiable scaling
by sign. (WS ,WU , α, ϵ) = (0.8, 2.0, 10.0, 0.1) resulted in the
best balance of fast trajectories and safe trajectories.

ei =

{
yi−ŷi

yi+ϵ if yi is a velocity estimate
−(yi−ŷi)

yi+ϵ if yi is a time estimate
(8)

loss =
1

N

N∑
i=1

(σ(α · ei) ·WS · ei + (1− σ(α · ei)) · (−WU · ei))

(9)

Fig. 1: Soft-sigmoid threshold scaling for per item loss ei

We define additional hyperparameters outlined in Table IV
for training. Patience defines how many epochs to tolerate no
decrease in test loss before breaking out of training loop. The
random bound, B, defines an upper bound of noise added to
the normalized Ei as seen in (10). When training, we use the
Adam optimizer and a step learning rate scheduler.

Hyperparameter Value
EPOCHS 1000
BATCH SIZE 1280
PATIENCE (Early Stopping) 100
B (Noise Factor) 0.1
lr0 0.01
Scheduler Step Size 50
Scheduler Gamma 0.8
Test / Train Split 92 / 8

TABLE IV: Model Hyperparameters used to balance training
speed and stability

Etraining = Enormalized +B · Unif(0, 1) · N8(0, I8) (10)

VI. RESULTS

A. Simulation

BoundaryPredictor performs well on the test dataset as seen
in with near zero instances of unsafe behavior as seen in Fig.
2. The time error distribution is fairly right skewed indicating
a preference towards slower trajectories. The velocity distribu-
tion is more Guassian centered around a negative percent error,

Fig. 2: Percent error log-distribution in test dataset (excluding
labels of 0 due to divide by zero)

Fig. 3: Pathing in simulation through gate course with frequent
change in direction and height

similarly indicating a preference towards slower trajectories.
The higher rate of −100% error in the velocity prediction is
explained by the use of the Sigmoid activation function on
the outputs which caps the error in the velocity dimension.
Even when the network is most incorrect, the output action
is still safe. In simulation, we try a variety of gate courses
and observe the BoundaryPredictor network preferring to take
slower trajectories out of gates which change in heading
rapidly, while accelerating through gates which are aligned.
An example of a successful pass through a more challenging
gate course can be seen in Fig. 3.

B. Deployment In Lab

When deployed on real vehicles we noticed a similar
performance to that in the sim (with the yaw normalization
from (4) removed). We use the Crazyswarm ROS 1 wrapper
for the Crazyflie 2.0 API [6], along with localization data from
a Vicon motion capture system. On the same course as Fig.
3, you can observe successful behavior in real life in Fig. 4.

C. Sim2Real

When specifically evaluating performance degradation from
simulation to real deployment, we can observe Fig. 5 which
shows that there exists similar shapes of error between com-
manded state and measured state in both simulation and in
real-life. The difference in magnitude of errors appears to be
fairly similar and stochastic.

VII. DISCUSSION AND CONCLUSION

The proposed method for imitation learning on cost
minimized trajectory sampling is shown to work in the

Fig. 4: Pathing in deployment. Note image top-down distortion

Fig. 5: Position error when following commanded trajectory
in simulation and real life

BoundaryPredictor framework. Furthermore, BoundaryPredic-
tor shows that the high success values in a drone racing
scenario can be generalized from a three gate setup without
considering long-horizon ideas. The network shows a strong
ability to generalize the space of gate setups shown with
high performance on test dataset. Future works will need to
consider that a large number of constraints were placed in
the cost sampling procedure which limit what actions can
be taken. Revisiting this space will be critical to expand
BoundaryPredictor to become competitive with other methods
and generalize to any three dimensional trajectory.

REFERENCES

[1] Bohui Shi, Youmin Zhang, Lingxia Mu, Jing Huang, Jing Xin, Yingmin
Yi, Shangbin Jiao, Guo Xie, and Han Liu. Uav trajectory generation based
on integration of rrt and minimum snap algorithms. In 2020 Chinese
Automation Congress (CAC), pages 4227–4232. IEEE, 2020.

[2] Drew Hanover, Antonio Loquercio, Leonard Bauersfeld, Angel Romero,
Robert Penicka, Yunlong Song, Giovanni Cioffi, Elia Kaufmann, and
Davide Scaramuzza. Autonomous drone racing: A survey. IEEE
Transactions on Robotics, 2024.

[3] Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio, Matthias Müller,
Vladlen Koltun, and Davide Scaramuzza. Champion-level drone racing
using deep reinforcement learning. Nature, 620(7976):982–987, 2023.

[4] Daniel Mellinger and Vijay Kumar. Minimum snap trajectory generation
and control for quadrotors. In 2011 IEEE international conference on
robotics and automation, pages 2520–2525. IEEE, 2011.

[5] Zhaocong Yuan, Adam W Hall, Siqi Zhou, Lukas Brunke, Melissa
Greeff, Jacopo Panerati, and Angela P Schoellig. Safe-control-gym: A
unified benchmark suite for safe learning-based control and reinforcement
learning in robotics. IEEE Robotics and Automation Letters, 7(4):11142–
11149, 2022.

[6] James A. Preiss*, Wolfgang Hönig*, Gaurav S. Sukhatme, and Nora
Ayanian. Crazyswarm: A large nano-quadcopter swarm. In IEEE
International Conference on Robotics and Automation (ICRA), pages
3299–3304. IEEE, 2017. Software available at https://github.com/USC-
ACTLab/crazyswarm.

